Irradiation of Neurons with High-Energy Charged Particles: An In Silico Modeling Approach

نویسندگان

  • Murat Alp
  • Vipan K. Parihar
  • Charles L. Limoli
  • Francis A. Cucinotta
چکیده

In this work, a stochastic computational model of microscopic energy deposition events is used to study for the first time damage to irradiated neuronal cells of the mouse hippocampus. An extensive library of radiation tracks for different particle types is created to score energy deposition in small voxels and volume segments describing a neuron's morphology that later are sampled for given particle fluence or dose. Methods included the construction of in silico mouse hippocampal granule cells from neuromorpho.org with spine and filopodia segments stochastically distributed along the dendritic branches. The model is tested with high-energy (56)Fe, (12)C, and (1)H particles and electrons. Results indicate that the tree-like structure of the neuronal morphology and the microscopic dose deposition of distinct particles may lead to different outcomes when cellular injury is assessed, leading to differences in structural damage for the same absorbed dose. The significance of the microscopic dose in neuron components is to introduce specific local and global modes of cellular injury that likely contribute to spine, filopodia, and dendrite pruning, impacting cognition and possibly the collapse of the neuron. Results show that the heterogeneity of heavy particle tracks at low doses, compared to the more uniform dose distribution of electrons, juxtaposed with neuron morphology make it necessary to model the spatial dose painting for specific neuronal components. Going forward, this work can directly support the development of biophysical models of the modifications of spine and dendritic morphology observed after low dose charged particle irradiation by providing accurate descriptions of the underlying physical insults to complex neuron structures at the nano-meter scale.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approximate analytical solution of the Bethe equation for charged particles in the range of radiotherapy energy

Charged particles such as protons and carbon ions are an increasing tool in radiation therapy. However, unresolved physical problems prevent optimal performance, including estimating the deposited dose in non-homogeneous tissue, is an essential aspect of optimizing treatment. The Monte Carlo (MC) method can be used to estimate the amount of radiation, but, this powerful computing operation is v...

متن کامل

The biological effects induced by high-charged and energy particles and its application in cancer therapy

The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...

متن کامل

Compare charged and uncharged particles leakage of plasma focus for medical radioisotopes production

In this study, to calculate the radioactivity of radioisotopes such as 11C, 15O, 18F and 123,124I in a focus plasma device for the production of medical radioisotopes, the particles of neutrons and protons with cubic targets of Nitrogen, Xenon, Carbon and a solid natural Boron is used. Particles energy are at the input of the program from 1MeV to 10MeV. Also, the total yield coefficient is cons...

متن کامل

Energy Modeling and Simulation including particle technologies within Single and Double Pass Solar Air Heaters

In order to obtain the best performance of the solar air heaters, it is necessary to find optimum performance conditions. The aim of this research paper is to achieve optimum conditions, by comparing single and double pass solar air heaters. Also, a brief review study of various related research works of all scenarios for a single and double pass and packed bed (including particle technologies)...

متن کامل

بررسی شتاب‌دهی ذرات باردار از طریق باز‌اتصالی مغناطیسی در محیط‌های پلاسمایی

Magnetic reconnection, which occurs in high conducting plasmas, changes the topology of magnetic field lines and converts magnetic energy into the kinetic and thermal energy of plasma and also accelerates charged particles. This phenomenon plays an important role in changing the dynamic of laboratory and space plasmas such as fusion tokamaks and sun’s corona. The electric and magnetic fields ge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015